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Abstract

We provide the first study on how COVID-19 vaccine rollout affects Australian

financial markets. To examine the heterogeneous and asymmetric effects of vac-

cination rate on financial markets, we adopt the quantile-on-quantile regression

(QQR). We also use the novel quantile copula coherency developed by Barunı́k

and Kley (2019) to detect longer (e.g. monthly or yearly) reactions of financial

markets or distinguish the mixed market reactions to short- and long-persistent

impacts from vaccine rollout. We find that relative short-term impacts of lagged

vaccination rates on quantiles of the returns of the ASX200 stock price and foreign

exchange (FX) are stable against fluctuations of the Dow Jones stock price index

or FX return at various quantiles. Therefore, the vaccination policy implemented

in Australia homogeneously affects financial markets at quantiles. Moreover, our

study properly detects short- and long-lived significant reactions of the stock price

index and FX returns to the vaccine rate variation.
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1 Introduction

Although many hoped that by this point of time the coronavirus (COVID-19) would
be spoken of in the past tense, the pandemic continues to pose challenges in many
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parts of the world. A large body of literature has documented the effects of the spread
of COVID-19, especially on the stock market (see e.g. Jebabli et al., 2021; Liu et al.,
2021; Rahman et al., 2021), commodity markets (e.g. Amar et al., 2021; Bakas and
Triantafyllou, 2020), cryptocurrency markets (e.g. Corbet et al., 2020; Kakinaka and
Umeno, 2021; Rubbaniy et al., 2021), derivative markets (Hanke et al., 2020; Li et al.,
2022), exchange rate market (Iyke and Ho, 2021; Narayan, 2021; Zhou, 2021), and
macroeconomic policy (Elgin et al., 2021; Gholipour and Arjomandi, 2022). However,
the empirical relationships between COVID-19 vaccine rollout and financial markets
have been underexplored. In this study, we aim to fill this research gap.

There is great anticipation of the world economy returning to its pre-pandemic status.
The implementation of vaccination policy may provide hope achieving this. The main
objective of this paper is to provide early evidence on how large and persistent the
Australian financial markets respond to the COVID-19 vaccination rate. We focus on
Australia for two reasons: First, although having a slow start, the latest vaccination rate
figures put Australia in a leading position worldwide to stop the spread of the pan-
demic. In early November 2021, Australia overtook the UK in terms of the percentage
of the population of any age who had received two vaccine doses, making the country
an international leader in the vaccination rollout. Second, Australian financial markets
are one of the most affected markets in the world. Therefore, it can provide insights into
market reactions during the vaccine implementation period. We consider two crucial
markets in the Australian financial system: stock and foreign exchange markets. Ac-
cording to the Reserve Bank of Australia (RBA),1 the four key sectors of the Australian
economy are: health and education, mining, finance, and construction. Therefore, to
further understand the reaction of major Australian industries to COVID-19 vaccine
rollout, we specifically focus on the performance of these four sectors: healthcare,
consumer discretionary,2 materials,3 and financial.

Our study contributes to the literature in two ways. First, to the best of our knowledge,
this study is the first attempt to analyse the reaction of financial markets to COVID-19
vaccine rollout. The only similar study is Rouatbi et al. (2021), who investigated the
role of mass COVID-19 vaccination programs on stock market volatility. Our study
differs from theirs in at least two aspects. Specifically, we not only explore the response
of the stock market at the aggregate level, but also at the sector level, and consider other
financial markets. Hence, our study provides a more comprehensive understanding
of the linkage between the progress of vaccination policies and financial markets.

1https://www.rba.gov.au/education/resources/snapshots/economy-composition-snapshot/
2Most of the education companies whose shares are publicly listed on the Australian Securities Exchange
(ASX) are categorised under the consumer discretionary sector.
3Mining and construction companies such as BHP Group Limited and Rio Tinto whose share are publicly
listed on the ASX are categorised under the materials segment.
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The other difference is in our empirical strategy, which is also related to the second
contribution. In particular, the novelty of our paper lies in the analysis of the entire
dependence structure of the quantile of different financial market data series and that
of vaccination rate, thereby extending the quantile regression to a quantile-on-quantile
regression (QQR) developed by Sim and Zhou (2015). Tail events such as financial
crises and the current global pandemic can cause financial markets to react differently
to non-volatile periods. It is therefore crucial to understand the importance of tail
behaviours in macroeconomic and financial data series. The conventional methods to
examine the financial markets such as vector autoregressive (VAR) method and ordinary
least squares (OLS) or quantile regression, fail to capture the complex inter-dependent
relationship at different quantiles for our data series. The QQR approach, however,
combines quantile regression and nonparametric estimation techniques, which can
show the nonlinear relationship between vaccine rollout and financial markets in an
ad hoc fashion. Moreover, the QQR analysis enables us to explore the impact that the
quantiles of global stock market returns have on the relationship between vaccination
rates and quantiles of financial market series, thus presenting a more comprehensive
picture of the overall inter-dependence between them.

To detect longer (e.g. monthly or yearly) reactions of the financial markets or identify
the mixed signals of short- and long-lived responses of one variable to another, we
also adopt the novel quantile copula coherency developed by Barunı́k and Kley (2019).
We detect the shortest (daily) to the longest (yearly) responses based on this frame-
work. Barunı́k and Kley’s (2019) approach utilises the dependence measure based on a
quantile spectrum, which is more robust to extreme events, strong asymmetries and
nonlinear dynamics of data series. In addition, the dependence structure between data
captured from a copula-based quantile cross-periodogram is invariant to outliers.

The remainder of this paper is organised as follows. In Section 2, we discuss the data set
and present the empirical strategy undertaken in this study. Section 3 reports empirical
findings. Section 4 concludes.

2 Data and Empirical Strategy

2.1 Data

The data used in this study comprise daily observations of the COVID-19 vaccination
rate in Australia (measured as the total number of vaccination doses administrated
per 100 people in the total population), the equilibrium value of AUD (measured as
Australia’s real effective exchange rate (REER)), and Standard & Poor’s Australian
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Securities Exchange 200 (S&P/ASX200) index as a benchmark for the Australian stock
market. To investigate the response of Australian industries to the COVID-19 vaccin-
ation rate, we also use four sector indices: S&P/ASX200 Healthcare, S&P/ASX200
Consumer Discretionary, S&P/ASX200 Materials, and S&P/ASX200 Financial. All data
series were gathered from Datastream. The sample period is from 22 February 2021
to 5 November 2021.4 The vaccination rate is first-differenced to show its increase per
day, and then 5-day moving averaged to remove the day bias of the reported number
of vaccination doses. All data series are converted into natural logarithms except for
the vaccination rate and first-differenced. To control for the day-of-the-week effect and
the time-varying variances in these stock price indices and foreign exchange rate return
series, they are first regressed on dummy variables that represent the weekdays from
Tuesday to Friday in a GARCH (1, 1) model. The standardised residuals are used as
adjusted return series for our analysis.

2.2 Quantile regression

To examine the tail behaviours of the stock price and FX returns to the vaccination rate
change based on the time domain approach, we first estimate the quantile regression
proposed by Koenker and Bassett (1978) as a benchmark exercise. For the regressors,
the lagged vaccination rates (t − 1 ∼ t − 5), ASX200 stock price return or FX return,
Dow Jones industrial average index return, and Chicago Board Options Exchange’s
Volatility Index (VIX) are used. We assume that the Dow Jones industrial average index
return represents the global stock market trend, and the VIX represents the global
volatility of financial markets. Our model using the ASX200 stock price return as a
regressand is as follows.

ASX200t = ατ +
5

∑
i=1

βτ
i Vaccinet−i + γτFXt + δτDJt + ζτVIXt + vτ

t (1)

where ASX200, Vaccine, FX, DJ, and VIX represent ASX200 stock price return, vaccina-
tion rate, FX return, Dow Jones industrial average index return, and VIX, respectively.
The parameters ατ, βτ, γτ, δτ, and ζτ vary with τ. vτ

t is an error term that has a zero τ-
quantile. When we use the FX return or each sectoral stock price return as a regressand,
the ASX200 stock return is replaced.

4We excluded the data for weekends and holidays.
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2.3 Quantile-on-quantile regression

The tails of the distribution of the ASX200 stock price return (or sectoral stock price
return or FX return) may more sensitively respond to the tail behaviours of the US
stock return. Particularly in crisis periods such as the COVID-19, the upper quantile
(e.g. 0.95%) or lower quantile (e.g., 0.05%) of the stock/FX return seems to be more
dependent on the 0.95- or 0.05-quantiles of the Dow Jones return. If so, the quantile
regression explained in Section 2.2 may not fully capture such dependence in its
entirety. Moreover, the coefficients of the lagged vaccination rate series may change
with different quantiles of the Dow Jones return in the quantile regression. To consider
these possibilities and confirm the robustness of the coefficients of the vaccination rate
in this case, we utilize a quantile-on-quantile (QQR) regression proposed by Sim and
Zhou (2015), which is able to examine how the quantiles of one variable affect the
conditional quantiles of another variable. We briefly describe the QQR method below.

Let τ1 denote the quantile of the ASX200 stock return and rewrite Equation (1) as
follows:

ASX200t = ατ1 +
5

∑
i=1

βτ1
i Vaccinet−i + γτ1FXt + δτ1DJt + ζτ1VIXt + vτ1

t

= ατ1 + δτ1DJt + β′xt + vτ1
t (2)

where β′ = (βτ1
1 , βτ1

2 , βτ1
3 , βτ1

4 , βτ1
5 , γτ1 , ζτ1)′ and x′

t = (Vaccinet−1, Vaccinet−2, Vaccinet−3,
Vaccinet−4, Vaccinet−5, FXt, VIXt)′. To study the relationship between the τ1-quantile of
ASX200 return and the quantile (τ2) of Dow Jones return, which is denoted as DJτ2

t , we
treat δτ1(·) as an unknown function of DJt. We then take a first order Taylor expansion
of δτ1(DJt) around DJτ2

t .

δτ1(DJt) ≈ δτ1(DJτ2) + δτ′
1(DJτ2)(DJt − DJτ2)

Sim and Zhou (2015) define δτ1(DJτ2) and δτ′
1(DJτ2) as δ0(τ1, τ2) and δ1(τ1, τ2), respect-

ively. Hence,
δτ1(DJt) ≈ δ0(τ1, τ2) + δ1(τ1, τ2)(DJt − DJτ2) (3)

By substituting Equation (3) into (2), we obtain:

ASX200t = α(τ1) + δ0(τ1, τ2) + δ1(τ1, τ2)(DJt − DJτ2) + b′xt + vτ1
t

= α(τ1, τ2) + δ1(τ1, τ2)(DJt − DJτ2) + b′xt + vτ1
t (4)

where ατ1 ≡ α(τ1), β′ ≡ b′ = (β1(τ1), β2(τ1), β3(τ1), β4(τ1), β5(τ1), γ(τ1), ζ(τ1))
′, and

α(τ1, τ2) ≡ α(τ1) + δ0(τ1, τ2).
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Equation (4) can be estimated by quantile regression at a given value of τ1. Sim and
Zhou (2015), instead, solve the weighted equation as follows.

min
δ0,δ1

ρτ1 [ASX200t − α(τ1, τ2)− δ1(τ1, τ2)(DJt − DJτ2)− b′xt]K(
Fn(DJt)− τ2

h
) (5)

where ρτ1 corresponds to the absolute value function that gives the τ1-conditional
quantile of ASX200t as a solution. We use a normal kernel function as K(·) to weight
observations according to a normal probability distribution with the bandwidth h.5

Theses weights are inversely related to the distance of DJt from DJτ2 ; in other words,
the distance of the empirical distribution function Fn(DJt) =

1
n ∑n

k=1 I(DJk < DJt) from
τ2, where τ2 is the value of the distribution function that refers to DJτ2 .

2.4 Quantile copula coherency

To investigate how large and persistent the Australian financial markets reacted to
vaccine rollout, we adopt the novel quantile copula coherency proposed by Barunı́k
and Kley (2019).

Let {Xt}t∈Z be a d-variate strictly stationary process, with components Xt,l, l = 1, ..., d;
that is, Xt = (Xt,1, ..., Xt,d)

′. Xt,l has a marginal distribution function Fl(q) and inverse
function q1(τ) := F−1

l (τ) := inf{q ∈ R : τ ≤ Fl(q)}, where τ ∈ [0, 1]. The matrix
of quantile cross-covariance, Γk(τ1, τ2) := (γl1l2

k (τ1, τ2))l1,l2=1,...,d, where γl1l2
k (τ1, τ2)

represents the cross-covariance of a pair (Xt,l1 , Xt,l2), which is specified as follows:

γl1l2
k (τ1, τ2) := Cov(I{Xt,l1 ≤ ql1(τ1)}, I{Xt−k,l2 ≤ ql2(τ2)}) (6)

where l1, l2 ∈ {1, ..., d}, k ∈ Z, and τ1, τ2 ∈ [0, 1]. I(·) is an indicator function. The
quantile-based quantities are functions of τ1 and τ2, which are quantiles of a quantile re-
gression. In the frequency domain, under approximate mixing conditions, the quantile
cross-spectral densities are:

fqτ1 ,qτ2
(ω) := ( f l1l2

qτ1 ,qτ2
(ω))l1,l2=1,...,d (7)

where

f l1l2
qτ1 ,qτ2

(ω) :=
1

2π

∞

∑
k=−∞

γl1l2
k (τ1, τ2)e−ikω (8)

5h is given by the Silverman optimal bandwidth h = 3.49σT1/3, where σ = min( IQR
1.34 , std(DJ)), where

IQR and std denote the inter-quantile range and standard deviation, respectively; T is the sample size.
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and ω is the frequency, with ω ∈ R. Each quantile cross-spectral density, i.e. f l1l2
qτ1 ,qτ2

(ω)

is a complex-valued function. As in conventional spectral analysis, its real and imagin-
ary parts are known as the quantile cospectrum and quantile quadrature spectrum.

To measure the dynamic dependence structure of the two data series {Xt,l1}t∈Z and
{Xt,l2}t∈Z, the quantile coherency is defined as follows:

Rl1l2
qτ1 ,qτ2

(ω) :=
f l1l2
qτ1 ,qτ2

(ω)

( f l1l1
qτ1 ,qτ1

(ω) f l2l2
qτ2 ,qτ2

(ω))1/2
(9)

where (τ1, τ2) ∈ [0, 1]2. The modulus squared of this quantile coherency, for instance,
|Rl1l2

qτ1 ,qτ2
(ω)|2, is the quantile coherence.

When we use the empirical distribution function of Xt,l , i.e., F̂n,l(X) := n−1 ∑n−1
t=0 I{Xt,l ≤

x}, the rank-based copula cross-periodograms (CCR periodograms) are:

I l1l2
n,R(ω; τ1, τ2) :=

1
2πn

dl1
n,R(ω; τ1)d

l2
n,R(−ω; τ2) (10)

where l1, l2 ∈ {1, ..., d}, ω ∈ R, (τ1, τ2) ∈ [0, 1]2, and

dl
n,R(ω; τ) :=

n−1

∑
t=0

I{F̂n,l(Xt,l) ≤ τ}e−iωt =
n−1

∑
t=0

I{R(n)
t,l ≤ nτ}e−iωt (11)

where l = 1, ..., d, ω ∈ R, τ ∈ [0, 1], and R(n)
t,l refers to the rank of Xt,l among X0,l , ..., Xt−1,l .

As shown in Kley et al. (2016), when estimating the quantile cross-spectral density
f l1l2
qτ1,qτ2(ω), the CCR periodogram is not consistent. By correcting biases, the smoothed

versions (i.e. smoothed CCR periodogram as below) are consistent (see Kley at al., 2016,
Theorem 3.5).

Ĝl1l2
n,R(ω; τ1, τ2) :=

2π

n

n−1

∑
s=1

Wn(ω − 2πs/n)I l1l2
n,R(

2πs
n

; τ1, τ2) (12)

where Wn refers to a sequence of weight functions. The smoothed CCR periodo-
gram also maintains asymptotic normality. It is noteworthy that when fixing l1, l2
and τ1, τ2, the smoothed CCR periodogram is asymptotically equivalent to the con-
ventional smoothed periodogram determined from the unobservable bivariate time
series (I{Fl1(Xt,l1) ≤ τ1}, I{Fl2(Xt,l2) ≤ τ2})(t = 0, ..., n − 1). Utilising the property of
asymptotic normality, we can calculate the pointwise asymptotic confidence intervals
for the real and imaginary parts of the spectrum for a pair of (τ1, τ2).

The consistent estimators of quantile coherency are defined as follows:

7



R̂l1l2
n,R,qτ1,qτ2

:=
Ĝl1l2

n,R(ω; τ1, τ2)

(Ĝl1l1
n,R(ω; τ1, τ1)Ĝ

l2l2
n,R(ω; τ2, τ2))1/2

(13)

The difference between this coherency and Rl1l2
qτ1,qτ2(ω) together with the bias correc-

tion terms asymptotically converges to a normal distribution, indicating asymptotic
consistency (see Barunı́k and Kley, 2019, Theorem 4.1).

3 Empirical Results

3.1 Quantile regression results

Table 1 presents the estimation results. At the mean level (τ = 0.5), one or two
of the lagged vaccination rates are significant in the FX and consumer discretionary
sector. At the 0.05-quantile, which is the lower tail of the regressand (return) series,
the significance of the lagged vaccination rates is observed in more cases, such as the
ASX200, healthcare, consumer discretionary, materials, and finance sectors. The overall
significant impact is negative only for ASX200.6 At the 0.95-quantile, which is the upper
tail of the series, the FX, healthcare, consumer discretionary, and materials sectors have
significant coefficients of the lagged vaccination rates in the regression models. The
material sector only experiences an overall negative impact from the vaccination rate
change.7

3.2 Quantile-on-quantile regression results

Figures 1 to 3 display the selected estimated coefficient values of lagged vaccination
rates over quantiles of the ASX200 return (sectoral stock price return) and Dow Jones
return in a quantile-on-quantile regression.8 In each figure, the 3D plot shows coefficient
values over pairs of their quantiles. Figure 1 shows the estimated coefficients of vaccine
rates (t − 1) and (t − 3), which are found significant in the quantile regression shown in
Table 1. Panel A of Figure 1 reveals the relative stability of the coefficient of vaccine rate
(t − 1), though some outliers occur at around 0.9-quantile of ASX200 and 0.05-quantile
of Dow Jones. Panel B of Figure 1 also shows stable coefficient values except for some

6The overall impacts are 8.976 − 19.877 = −10.901 for the ASX200, 6.198 for the healthcare, and 4.938 for
the materials.
7The overall impacts are 1.660 for the FX, 2.603 for the consumer discretionary, and -3.338 for the
materials.
8We have conducted a quantile-on-quantile regression in more cases. The results omitted here are
available upon request.
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outliers. In Panel A of Figure 2, the estimated coefficient of vaccine rate (t − 1) slightly
fluctuates except for 0.05- and 0.10-quantiles of Dow Jones. Panel B of Figure 2 depicts
a flat surface of the coefficient values of vaccine rate (t − 1), which is also significant in
Table 1, with one exceptional case of 0.05-quantile of Dow Jones and 0.5∼1.0-quantiles
of Healthcare sector stock price returns. Figure 3 shows the estimated coefficient values
of vaccine rate (t − 2) over pairs of quantiles of Materials sector stock price return and
FX return. In this case, the estimated coefficient crosses a zero line and takes positive or
negative values corresponding to various pairs of quantiles. Therefore, the coefficient
does not seem to be robust to changes of quantile pairs.

As shown above, the time domain approach is effective in investigating whether the
vaccination rate change has significant short-lived (i.e. daily or weekly) impacts on
stock price and FX returns. However, we cannot detect longer (e.g. monthly or yearly)
reactions occurring in the stock and FX markets or distinguish the mixed market
reactions to short- and long-lasting impacts from vaccination policy implementation.
In this case, the frequency-domain approach helps to find a mixture of signals and
identify each. Therefore, next, we estimate the quantile copula coherency between the
vaccination rate and each stock price/FX return.

Figure 1: 3D plots of selected coefficients in the quantile-on-quantile estimation for ASX200

Note: Panel A and Panel B respectively show the estimated parameters, β1(τ1) and β3(τ1),
of the regression equation ASX200t = α(τ1, τ2) + δ1(τ1, τ2)(DJt − DJτ2) + β1(τ1)Vaccinet−1 +
β2(τ1)Vaccinet−2 + β3(τ1)Vaccinet−3 + β4(τ1)Vaccinet−4 + β5(τ1)Vaccinet−5 + γ(τ1)FXt +
ζ(τ1)VIXt + vτ1

t . Both of the estimated slope coefficients are placed on the z-axis against the
quantiles of the ASX200 on the y-axis and the quantiles of Dow Jones on the x-axis.
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Figure 2: 3D plots of selected coefficients in the quantile-on-quantile estimation for FX and
Healthcare

Note: Panel A shows the estimated parameters β1(τ1) of the regression equation: FXt =
α(τ1, τ2) + δ1(τ1, τ2)(DJt − DJτ2) + β1(τ1)Vaccinet−1 + β2(τ1)Vaccinet−2 + β3(τ1)Vaccinet−3 +
β4(τ1)Vaccinet−4 + β5(τ1)Vaccinet−5 + γ(τ1)ASX200t + ζ(τ1)VIXt + vτ1

t . In Panel A, the es-
timated slope coefficients are placed on the z-axis against the quantiles of the FX on the y-axis
and the quantiles of Dow Jones on the x-axis. Panel B shows the estimated parameters β1(τ1) of
the regression equation: Healthcaret = α(τ1, τ2) + δ1(τ1, τ2)(DJt − DJτ2) + β1(τ1)Vaccinet−1 +
β2(τ1)Vaccinet−2 + β3(τ1)Vaccinet−3 + β4(τ1)Vaccinet−4 + β5(τ1)Vaccinet−5 + γ(τ1)ASX200t +
ζ(τ1)FXt + vτ1

t . In Panel B, the estimated slope coefficients are placed on the z-axis against the
quantiles of the Healthcare on the y-axis and the quantiles of Dow Jones on the x-axis.

3.3 Quantile copula coherency estimates

We estimate the quantile copula coherency (shown in Equation (13)) between the vac-
cination rate and each stock/FX return series. Because the real parts of the quantile co-
herency estimates reveal frequency dynamics in quantiles of the joint distribution of the
data pairs, we calculate them for three combinations of quantile levels: 0.5|0.5, 0.5|0.05,
and 0.5|0.95.9 For example, the quantile pair of 0.5|0.05 means that the vaccination rate
at the 0.5-quantile (mean) and a return series at the lower 0.05-quantile of the data distri-
bution are used for calculation. To investigate how large and persistent stock prices and
FX returns react at their lower/upper quantiles and mean of the distributions under
the progress of the nationwide vaccination policy, we focus on the data variation of the
vaccination rate at its mean and the return series at their lower/upper tails and mean.
To confirm the persistence of the cycles of the data pairs being investigated, we present
the quantile coherency estimates for ω ∈ 2π{1/2.1, 1/2.5, 1/5, 1/22, 1/250}, which
correspond to 3/2 daily, half weekly, weekly, monthly, and yearly cycles of coherency,
respectively. The estimate for each ω shows how long the variation cycle of data pairs

9We compute the estimates using Epanechnikov kernel and a bandwidth of 0.5n1/4.
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persists; for example, significantly higher/lower quantile coherency for ω = 2π(1/5)
implies that the variation of data pairs significantly positively/negatively persists for
a week. The same consideration holds for ω = 2π(1/2.1), 2π(1/2.5), 2π(1/22), or
2π(1/250), which means that the data variation persists for one and a half days, a half
week, a month, or a year.

Figure 3: 3D plot of selected coefficients in the quantile-on-quantile estimation for Materials

Note: This figure shows the estimated parameters β2(τ1) of the regression equation:
Materialst = α(τ1, τ2) + γ1(τ1, τ2)(FXt − FXτ2) + β1(τ1)Vaccinet−1 + β2(τ1)Vaccinet−2 +
β3(τ1)Vaccinet−3 + β4(τ1)Vaccinet−4 + β5(τ1)Vaccinet−5 + δ(τ1)DJt + ζ(τ1)VIXt + vτ1

t . The es-
timated slope coefficients are placed on the z-axis against the quantiles of the Materials on the
y-axis and the quantiles of FX on the x-axis.

Figures 4(a), 4(b), and 4(c) show the quantile copula coherency estimates between the
vaccination rate and the ASX200 return. The dotted regions represent 95% confidence
intervals. The vertical lines of Y, M, W, 1/2W, and 3/2D represent the yearly, monthly,
weekly, half-weekly, and one-and-a-half daily cycles of coherency at frequency scales.
Figures 4(a) and 4(b) illustrate significant positive cycles of the vaccination rate and
Australian stock index return at the 0.5|0.5- and 0.5|0.05-quantiles, which implies that
weekly or less than weekly positive variations exist between the vaccination rate and
stock return at the mean and mean|lower tail of the joint distribution. In addition, at
the lower tail of the return distribution, a short-lived negative cycle was observed at
around frequency = 0.35. Figure 4(c) shows no significant cycle of 0.5|0.95-quantile
coherency. This may suggest that the Australian stock return at the upper tail of the
distribution is not related to the implementation of the national vaccination policy,
which is consistent with the quantile regression results shown in Table 1.
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Figure 4: The quantile coherency estimates between the vaccination rate and ASX200 return

Figure 5: The quantile coherency estimates between the vaccination rate and FX return

Figures 5(a), 5(b), and 5(c) show the quantile copula coherency estimates between the
vaccination rate and FX return. At the 0.5|0.5-quantile, Figure 5(a) shows a positive year-
long cycle of quantile coherency, while a significant drop appears at frequency = 0.3 (less
than a week and more than a half week). Interestingly, the foreign exchange rate market
shows long positive and short negative reactions to vaccination rate variation. This
was not found in the quantile regression. In addition, the 0.5|0.95-quantile coherency
presents a significantly short negative cycle. This means that the upper 5% tail of the
FX return series negatively reacts to the national vaccination rate movement for a short
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time. The 0.5|0.05-quantile coherency cycle was not significant for all frequencies. This
also corresponds to the findings presented in Table 1.

Figure 6: The quantile coherency estimates between the vaccination rate and sectoral stock
return (healthcare)

Figure 7: The quantile coherency estimates between the vaccination rate and sectoral stock
return (consumer discretionary)
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Figure 8: The quantile coherency estimates between the vaccination rate and sectoral stock
return (materials)

In Figures 6 to 9, the quantile coherency estimates of the vaccination rate and sectoral
stock price index returns are plotted. At the mean level, the consumer discretionary
and financial sectors have significant positive variations for frequency = 0.35, which
suggests (less than weekly) short-term positive reactions to the vaccination rate increase.
At the 0.5|0.05-quantile, all sectors showed significant cycles at various frequencies. The
cycles of the healthcare, consumer discretionary, and finance sectors are significantly
positive around the weekly frequency or less. The longest (yearly) cycles are observed
in the consumer discretionary and materials sectors while the shortest one is done in
the healthcare and consumer discretionary sectors. The consumer discretionary and
materials sectors also have negative 0.5|0.95-quantile coherency cycles; on the other
hand, the finance sector shows a positive cycle. Notably, the consumer discretionary
and finance sectors are more sensitive to the vaccination rate variations, namely, the
reactions at all pairs of quantiles are significant. In light of these findings, the reactions
of the consumer discretionary sector imply mixed perspectives on the effects of the
vaccination policy progress on this sector. Short-term positive and negative cycles of
quantile coherency exist for all quantile pairs. At the same time, due to the high uncer-
tainty of this sector, negative yearly cycles at both tails of the return cast a pessimistic
view of its full recovery. The stock return in the financial sector, which has weekly
or half-weekly variations with the vaccination rate change, may reflect stock traders’
present growth predictions in this sector, created by the expansionary monetary policies
of the Reserve Bank of Australia.
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Figure 9: The quantile coherency estimates between the vaccination rate and sectoral stock
return (finance)

4 Concluding Remarks

This study provides early evidence on how vaccine rollout affects Australian financial
markets. Specifically, to examine the impacts of vaccination rate on different quantiles
of financial markets, we use the QQR approach developed by Sim and Zhou (2015).
The QQR method allows us to capture the quantile-specific relationship between
two data series and obtain a more comprehensive picture of the overall dependence
structure, compared with traditional techniques such as OLS or quantile regression.
Furthermore, to investigate how large and persistent Australian financial markets react
to the COVID-19 vaccine rollout, we also adopt the novel quantile copula coherency
estimation developed by Barunı́k and Kley (2019). Our empirical evidence points out
two main findings. First, the results of QQR approach suggest that relative short-term
impacts of lagged vaccination rates on quantiles of the returns of the ASX200 stock
price and FX are stable against fluctuations of the Dow Jones stock price index or FX
return at various quantiles. Therefore, the vaccination policy implemented in Australia
homogeneously affects financial markets at quantiles. Second, our study properly
detects short- and long-lived significant reactions of the stock price index and FX
returns to the vaccination rate variation. The results reveal both positive and negative
reactions of the stock and foreign exchange rate markets to the progress of vaccination
policy implementation. Relatively shorter (daily or weekly) tail responses are obtained
from the quantile regression; moreover, longer (monthly or yearly) tail responses are
successfully uncovered in the quantile coherency estimation.
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